Contents lists available at SciVerse ScienceDirect

ELSEVIER

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

The irradiation effects of Gd₂Hf₂O₇ and Gd₂Ti₂O₇

Y.H. Li^{a,b,*}, J. Wen^a, Y.Q. Wang^b, Z.G. Wang^c, M. Tang^b, J.A. Valdez^b, K.E. Sickafus^b

^a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
^b Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
^c Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

ARTICLE INFO

Article history: Received 19 April 2012 Received in revised form 24 May 2012 Available online 21 June 2012

Keywords: $Gd_2Ti_2O_7$ $Gd_2Hf_2O_7$ Ion irradiation effects

1. Introduction

Pyrochlore materials, with the general formula A₂B₂O₇, where A and B are metallic cations that can either be trivalent and tetravalent or divalent and pentavalent, represent an important structure type for immobilization of actinide-rich wastes and inert matrices [1–7]. In recent years, some papers have been published on ion irradiation effects of rare-earth titanate pyrochlores (A₂Ti₂O₇, A = Y, and Sm–Lu) with different lanthanide elements occupying the A sites [5-7]. The response of Ti pyrochlores to radiation-induced amorphization is almost not dependent on the cations at the A sites. All these Ti pyrochlores are sensitive to ion irradiation and can be amorphized at a relatively low fluence [4]. On the other hand, the response behaviors of rare-earth Zr pyrochlores ($A_2Zr_2O_7$, A = Y, and La–Gd) to radiation-induced amorphization are much different from each other when the A cations are different. Certain compositions readily disorder into the defect fluorite structure upon ion irradiation, and therefore they are remarkably resistant to amorphization. For example, Gd₂Zr₂O₇ do not experience a radiation-induced transformation from crystalline to amorphous state even at a peak ballistic damage dose as high as \sim 36 displacements per atom (dpa). On the other hand, $La_2Zr_2O_7$ can be amorphized at a relatively low ion dose of \sim 5.5 dpa for 1.5 MeV Xe⁺ ion irradiations at room temperature [8]. Theoretically studies showed that the major factors that can influence the response of pyrochlores to ion irradiation-induced amorphization include the cation radius ratio of A cation over B cation [1], defect formation energies on the

E-mail address: liyuhong@lzu.edu.cn (Y.H. Li).

ABSTRACT

In this report, we present dramatically different behavior between isostructural Gd₂Hf₂O₇ and Gd₂Ti₂O₇ pyrochlore using 400 keV Ne²⁺ irradiation under cryogenic conditions (~77 K), in which the lattice volume of the irradiated layer of Gd₂Ti₂O₇ increased with ion fluence up to 1×10^{15} ions/cm², whereas, the lattice volume of the irradiated layer of Gd₂Hf₂O₇ decreased with increasing fluence from 1×10^{15} to 6×10^{16} ions/cm². The cation radius ratio r_A/r_B , the bond-type of A–O and B–O bonds, the order-to-disorder transition energy of Gd₂Hf₂O₇ and Gd₂Ti₂O₇, temperature–composition (T–C) phase diagrams of HfO₂–Gd₂O₃ and TiO₂–Gd₂O₃ mixtures were used to explain the response of Gd₂Hf₂O₇ and Gd₂Ti₂O₇ to ion irradiation-induced structure transformation.

© 2012 Elsevier B.V. All rights reserved.

stability of pyrochlore [3], electronic structures of A-site cations [9,10], and $A-O_{48f}$ and $A-O_{8b}$ bonds [11]. Studies of Sickafus et al. indicated that T–C diagram is a good indicator to predict the irradiation tolerance of complex oxides systematically [3]. It was suggested that the compounds with natural order-to-disorder (O–D) transformations have good tolerance to ion irradiation induced amorphization.

Although extensive ion irradiation studies have been conducted on Ti and Zr pyrochlores, so far, only a few experimental investigations have been performed on ion irradiation effects of hafnate pyrochlores ($A_2Hf_2O_7$), where the B-site cation ionic radius of Hf⁴⁺ (0.71 Å) is between those of Ti⁴⁺ (0.605 Å) and Zr⁴⁺ (0.72 Å) [12]. In this paper, we compare, for the first time, the irradiation effects of Gd₂Hf₂O₇ and Gd₂Ti₂O₇ isostructural pyrochlores. Their response to the irradiation is discussed in terms of ionic sizes of the cations, the bond-type of A–O and B–O bonds, the order-to-disorder transition energy of Gd₂Hf₂O₇ and Gd₂Ti₂O₇, and the temperature–composition (T–C) phase diagrams of HfO₂–Gd₂O₃ and TiO₂– Gd₂O₃ mixtures.

2. Experimental procedure

Polycrystalline $Gd_2Ti_2O_7$ and $Gd_2Hf_2O_7$ samples were synthesized from Gd_2O_3 (Alfa Aesar, 99.99% purity), HfO₂ and TiO₂ powers (Aldrich Chemical company, 99.99% purity), by conventional ceramic processing procedures. The measured densities of the sintered pellets were larger than ~90% of their theoretically densities.

Ion irradiation was performed under cryogenic condition ($T_{sub-strate} \sim$ 77 K) at the Ion Beam Materials Laboratory, Los Alamos National Laboratory, using a 200 kV Danfysik high current research ion implanter. The 400 keV Ne²⁺ ions were implanted at normal

^{*} Corresponding author at: School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.

⁰¹⁶⁸⁻⁵⁸³X/ $\$ - see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.nimb.2012.06.003

incidence at fluences ranging from 5×10^{14} to 6×10^{16} ions/cm² using an ion flux of $\sim 1 \times 10^{12}$ ions/cm² s. The projected range of the 400 keV Ne ions in Gd₂Ti₂O₇ and Gd₂Hf₂O₇ were estimated using the Monte Carlo code SRIM [13]. The projected range, $R_{\rm p}$, was estimated to be 411 ± 125 and 369 ± 134 nm, respectively (with a target density $\rho = 6.567$ g/cm³ of Gd₂Ti₂O₇ and $\rho = 8.95$ g/cm³ of Gd₂Hf₂O₇). In these calculations, we assumed the threshold displacement energies for Gd, Ti, Hf and O are all 40 eV (these energies are arbitrary assumptions because we currently do not have experimental or theoretical estimates for these values) [14,15].

Grazing Incidence X-ray Diffraction (GIXRD) was used to characterize the crystal structure of the pristine and ion irradiated samples using a Bruker AXS D8 advanced X-ray diffractometer, θ -2 θ geometry, Cu–K α radiation, and the X-ray incidence angle γ = 0.5°. The depths of the X-rays in Gd₂Ti₂O₇ and Gd₂Hf₂O₇ at γ = 0.5°are 89 and 75 nm, respectively. The X-ray penetration depths were estimated geometrically [16]. The step size of the scan angle was 0.02° and a dwell time of 4 s per step. The scan range was 10–75°.

3. Results and discussion

Fig. 1 shows GIXRD patterns obtained from the pristine $Gd_2Hf_2O_7$ and the $Gd_2Hf_2O_7$ irradiated with 400 keV Ne²⁺ ions at fluences of 1.0×10^{15} - 6.0×10^{16} ions/cm², corresponding to a peak ballistic damage dose of \sim 0.25–15 dpa. The Gd₂Hf₂O₇ samples exhibit a weakly ordered pyrochlore structure: only three fundamental pyrochlore diffraction peaks of P{111}, P{113} and P{331} with small number counts can be discerned, diffraction peaks of P{222}, P{400}, P{440} and P{622} (or F{111}, F{200}, F{220} and F{311}) are fundamental fluorite reflections, which are contributed by both diffraction of pyrochlore structure and fluorite structure. From Fig. 1, one can discern the following phenomena: The three fundamental pyrochlore diffractions of P{111}, P{113} and P{331} diminished for the irradiated Gd₂Hf₂O₇. All fluorite peaks shift towards larger 2θ with increasing Ne ion fluence from 1×10^{15} to 6×10^{16} ions/cm². As an example, P{222} peak was zoomed on in Fig. 1, showing the gradual displacement with increasing Ne ion fluence. The displacement of the lattice reflections to larger 2θ is indicative of unit cell contraction.

Fig. 2 shows GIXRD patterns obtained from pristine $Gd_2Ti_2O_7$ and $Gd_2Ti_2O_7$ irradiated with 400 keV Ne²⁺ ions at fluences of 5.0×10^{14} – 1.0×10^{15} ions/cm², corresponding to a peak ballistic damage dose of ~0.16–0.32 dpa. The samples exhibit a pyrochlore superlattice structure. All peaks shift towards smaller 2 θ with increasing Ne ions. The displacement of the lattice reflection peaks to smaller 2θ indicates unit cell swelling. That is to say, the lattice parameter of the irradiated $Gd_2Ti_2O_7$ increases with increasing Ne ion fluence.

In order to quantify the changes of the lattice parameter of Gd₂Ti₂O₇ and Gd₂Hf₂O₇ with Ne ion fluence, Table 1 summarizes lattice parameter of the pristine and the irradiated Gd₂Ti₂O₇ and Gd₂Hf₂O₇. All data in Table 1 were calculated by using XRD data of Gd₂Ti₂O₇ and Gd₂Hf₂O₇ pellets before irradiation and after irradiation at $\gamma = 0.5^{\circ}$ X-ray incident angle. In Table 1, *d*-spacings were calculated according to Bragg's law, $2d \sin \theta = n\lambda$, and the lattice parameter *a* was calculated using individual reflection indices {*hkl*} and the cubic unit cell relationship $a = d_{hkl}(h^2 + k^2 + l^2)^{1/2}$. Four fundamental fluorite reflections P{222}, P{400}, P{440} and P{622} were used to calculate the average lattice parameter. From the lattice parameter value obtained for a given fluence, the changes of lattice parameter were determined as $\Delta a = a - a_0$, where a_0 is the lattice parameter of each pristine, unirradiated Gd₂Ti₂O₇ and $Gd_2Hf_2O_7$, while *a* is the lattice parameter of each irradiated Gd₂Ti₂O₇ and Gd₂Hf₂O₇. According to the previous study of ion irradiation effects on Y₂Ti₂O₇ pyrochlore, the lattice change is not a constant; the calculation result of lattice parameter is an average value, $\langle a \rangle$ [14]. From Table 1, the average lattice parameter changes of Gd₂Ti₂O₇ and Gd₂Hf₂O₇ were opposite. For Gd₂Ti₂O₇, the average lattice parameter increased with increasing fluence from 5×10^{14} to 1×10^{15} ions/cm², and it was amorphized when the irradiated fluence reached 1×10^{16} ions/cm² with the corresponding peak ballistic damage dose of 3.2 dpa (there is no attempt to show the TEM image here). Whereas for Gd₂Hf₂O₇, the average lattice parameter decreased with increasing dose from 1×10^{15} to 6×10^{16} ions/cm². The irradiated Gd₂Hf₂O₇ transformed to a disor-

Fig. 1. GIXRD patterns obtained from un-irradiated $Gd_2Hf_2O_7$ samples to a fluence of 1×10^{15} - 6×10^{16} ions/cm² at X-ray incidence angle of 0.5°. The inserted diagram was the zoomed in P{222} peak.

Fig. 2. GIXRD patterns obtained from un-irradiated and irradiated $Gd_2Ti_2O_7$ samples to a fluence of 5×10^{14} – 1×10^{15} ions/cm² at X-ray incidence angle of 0.5°. The inserted diagram was the zoomed in P{222} peak.

Table 1

Experimental results for lattice parameter and volume change in Gd₂Hf₂O₇ and Gd₂Ti₂O₇, as a function of Ne ion irradiation fluence, based on four main XRD peaks of pyrochlore P{222}, P{400}, P{440} and P{622}.

Dose (ions/cm ²)	$Gd_2Hf_2O_7$				Gd ₂ Ti ₂ O ₇			
	$a \text{ or } a_0(\text{\AA})$	V_0 or $V(Å^3)$	$\Delta V(Å^3)$	$\Delta V/V_0(\%)$	a(Å)	V_0 or $V(Å^3)$	$\Delta V(Å^3)$	$\Delta V/V_0(\%)$
Pristine	10.5288	1167.178	0	0	10.1542	1046.977	0	0
5×10^{14}	No experimental data				10.2990	1092.409	45.432	4.34
7×10^{14}					10.3049	1094.288	47.311	4.52
1×10^{15}	10.5228	1165.178	-2.0	-0.17	10.3066	1101.638	54.661	5.22
1×10^{16}	10.5118	1161.533	-5.6	-0.48	Amorphous			
6×10^{16}	10.4420	1138.555	-28.62	-2.45				

dered fluorite structure as proved by the disappearance of the pyrochlore superlattice reflections P{111}, P{113} and P{331}. No evidence of amorphization was observed for Gd₂Hf₂O₇ even at a high ion fluence of 6×10^{16} ions/cm² (~15 dpa).

The dramatically different behavior of Gd₂Ti₂O₇ and Gd₂Hf₂O₇ under ion irradiation showed striking opposite differences in lattice parameter and resistance to amorphization. Gd₂Ti₂O₇ swelled and was amorphized readily, whereas Gd₂Hf₂O₇ contracted and could not be amorphized even at 15 dpa. Similar example involves the dramatic difference in irradiation resistance between Er₂Ti₂O₇ and $Er_2Zr_2O_7$, with $Er_2Ti_2O_7$ is readily amorphized while $Er_2Zr_2O_7$ remains crystalline even at very high doses [1]. Another research indicated that La₂Zr₂O₇ pyrochlore is more resistant than structurally identical La₂Hf₂O₇ pyrochlore [17]. The radiation response of pyrochlore is highly dependent on composition and has previously been interpreted as being related to the radius ratio, r_A^{3+}/r_B^{4+} , of the A- and B-site cations. The compounds with more similar cation radius are more likely to form as disordered fluorites than as ordered pyrochlore, and fluorites are inherently more radiation resistant than pyrochlores [1]. So, Gd₂Hf₂O₇, with an ionic radius ratio of $r_{\rm A}^{3+}/r_{\rm B}^{4+}=1.48$, would more likely disorder to the defect fluorite structure than $Gd_2Ti_2O_7 (r_A^{3+}/r_B^{4+} = 1.74)$ [12]. Therefore, $Gd_2Hf_2O_7$ is more resistant to amorphization than Gd₂Ti₂O₇ under ion irradiation.

Another factor that plays an obvious and important role in determining the radiation response is the bond-type of A–O and

B–O bonds [9,18]. According to the Mulliken overlap population analysis by Lumpkin et al. [19], the covalency of Ti–O bond is larger than that of Hf–O. This trend also roughly follows that of Pauling's electronegativity. The electronegativity of Hf (1.3) is much smaller than that of Ti (1.54). The fact that Ti–O bond is more covalent than Hf–O bond may also explain why $Gd_2Ti_2O_7$ is more difficult to disorder than $Gd_2Hf_2O_7$ [18]. As the disordered structure is usually more resistant to the radiation damage [3], it is quite natural to understand that $Gd_2Hf_2O_7$ is more resistant to radiation than induced amorphization $Gd_2Ti_2O_7$.

First-principle calculations suggested that defect formation energy of order-to-disorder transition also plays an important role in determining the stability of radiation-induced amorphization of pyrochlore [9,10,20]. Pyrochlores with high defect formation energy will not easily relax back to the pyrochlore structure once defects are formed by either ion irradiation or high-pressure, and therefore the compounds behave less robust in a radiation environment [20,21]. Chao et al. calculated the disordering energies of $A_2B_2O_7$ (A^{3+} = Er, Dy, Tb, Gd and B^{4+} = Zr, Hf, Ti, Sn) using first-principle, they found that for the same A^{3+} cation, the disordering energies increase in the order $A_2Sn_2O_7 > A_2Ti_2O_7 > A_2Hf_2O_7 > A_2Zr_2O_7$ (A = Er, Dy, Tb and Gd)[18]. So, as compared to Gd₂Ti₂O₇, the defects in Gd₂Hf₂O₇ are easily formed. The weakly ordered pyrochlore Gd₂Hf₂O₇ structure has a strong propensity to transformation to the disordered-fluorite structure.

Fig. 3. Temperature–composition (T–C) phase diagram for Gd_2O_3 –HfO₂ binary oxide mixtures (based on the T–C phase diagram in [22]). The vertical line in the diagram denotes the composition of $Gd_2Hf_2O_7$.

Fig. 4. Temperature–composition (T–C) phase diagram for Gd_2O_3 –TiO₂ binary oxide mixtures (based on the T–C phase diagram in [23]). The vertical line in the diagram denotes the composition of $Gd_2Ti_2O_7$.

Previous ion irradiation experiment on derivate fluorite showed that a structure which has a strong propensity to accommodate ion-induced defects should have a high resistance to amorphization [3]. For example, $Dy_4Zr_3O_{12}$ cannot be amorphized even at very high radiation dose (55 dpa) because $Dy_4Zr_3O_{12}$ is initially a disordered fluorite. Whereas, titanate pyrochlores are far more susceptible to radiation-induced amorphization because titanates cannot readily accommodate disorder (the amorphous dose is less than 0.5 dpa). That is to say, disorder in titanates is energetically costly [14]. Our previous study indicates that the temperature-composition (T–C) phase diagram of compound is a good indicator

that can directly reflect the structural tolerance to the irradiation induced order-to-disorder (O–D) transformation. Figs. 3 and 4 show the T–C phase diagrams of HfO₂–Gd₂O₃ and TiO₂–Gd₂O₃ mixtures, respectively [22,23]. The Gd₂Ti₂O₇ pyrochlore is stable before it melts. While for 2:2:7 Gd₂Hf₂O₇ pyrochlore, it transforms to a disordered fluorite phase with increasing temperature before melt. For disordered fluorite Gd₂Hf₂O₇, Hf and Gd cations are randomly arranged on the cation sites, oxygen ions and oxygen vacancies are randomly arranged on the anion sites. Thus, it is reasonable to understand the experimental results: Gd₂Ti₂O₇ is amorphized at low ion irradiation fluence, whereas Gd₂Hf₂O₇

Fig. 5. Volume change associated with irradiation process (a) pyrochlore to fluorite, (b) pyrochlore to amorphous [25].

transforms to a disordered fluorite and shows remarkable resistance to amorphization under ion irradiation.

In addition, the volume changes associated with different A and B cations of A₂B₂O₇ structural transition from pyrochlore to fluorite, pyrochlore to amorphous were generated by Rushton et al., using molecular dynamics, as shown in Fig. 5(a) and (b), respectively [24]. The volume changes from pyrochlore to fluorite reported in Fig. 5(a) suggest that for $Gd_2Zr_2O_7$ the transformation from pyrochlore to fluorite is accompanied by a volume compaction of about 1%. This was also confirmed by the ion irradiation experiments in Gd₂Zr₂O₇ [25]. However, for Gd₂Ti₂O₇ the transformation from pyrochlore to amorphous as shown in Fig. 5(b), there is a significant volume expansion of about 7-8%. Although the volume change of Gd₂Hf₂O₇ from pyrochlore to fluorite transformation was not calculated, it can be deduced from Fig. 5(a) that there is also a volume compaction effect on Gd₂Hf₂O₇ under ion irradiation. The conclusion is based on the following facts: Gd₂Hf₂O₇ undergoes an order-to-disorder transformation from pyrochlore to fluorite when exposed to ion irradiation according to T-C phase diagram of Gd₂Hf₂O₇; meanwhile, the main structural transformation in Gd₂Hf₂O₇ under ion irradiation within the maximum fluence of $6\times 10^{16}\,\text{ions/cm}^2$ is pyrochlore-to-fluorite transformation as shown in Fig. 1. So Fig. 5(a) can be used to explain the volume changes of Gd₂Hf₂O₇ after ion irradiation. From Fig. 5(a), the pyrochlore-to-fluorite change in Gd₂Sn₂O₇ is also accompanied a volume compaction a little smaller than 1%. The radius of Hf⁴⁺ is 0.72 Å, which is larger than that of Sn⁴⁺ (0.69 Å) but only slighter smaller than that of Zr⁴⁺ (0.73 Å). Therefore, the volume also decreases due to the pyrochlore-to-fluorite transformation in $Gd_2Hf_2O_7$, as in $Gd_2Zr_2O_7$.

4. Conclusions

In summary, hafnate pyrochlore $Gd_2Hf_2O_7$ is found to be more radiation tolerant than its titanate equivalent $Gd_2Ti_2O_7$ because $Gd_2Hf_2O_7$ is more similar to the parent fluorite phase. On the other hand, other factors such as ionic radius ratio and bond-type of Aand B-site cations, defect formation energy of cations and anions also play a role in the ion irradiation effect of these compounds. The experimental observation reported here is consistent with previous predictions: a structure that has a strong propensity to accommodate ion-induced defects should have a high resistance to amorphization. Volume changes of the irradiated $Gd_2Hf_2O_7$ and $Gd_2Ti_2O_7$ are consistent with the theoretical prediction from atomic scale computer simulations.

The results from the current study further confirm that the T–C phase diagram, the ionic radius ratio and bond-type of A- and B-site cations, the O–D fluorite defect reaction pair energy are good indicators to judge potential high radiation tolerance ceramic compounds for the immobilization of high-level nuclear waste and excess nuclear materials.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11175076, 10975065, 91026021 and 11135002). The work also was sponsored by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES).

References

- K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, T. Hartmann, Science 289 (2000) 748.
- [2] W.J. Weber, A. Navrotsky, S. Stefanovsky, E.R. Vance, E. Vernaz, MRS Bull. 34 (2009) 46.
- [3] K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, B.P. Uberuaga, Nat. Mater. 6 (2007) 217.
- [4] B.D. Begg, N.J. Hess, W.J. Weber, R. Devanathan, J.P. Icenhower, S. Thevuthasan, B.P. McGrail, J. Nucl. Mater. 288 (2001) 208.
- [5] R.C. Ewing, W.J. Weber, J. Lian, J. Appl. Phys. 95 (2004) 5949.
- [6] J. Chen, J. Lian, L.M. Wang, R.C. Ewing, Appl. Phys. Lett. 79 (2001) 1989.
- [7] M. Lang, F. Zhang, J.M. Zhang, J.W. Wang, J. Lian, W.J. Weber, B. Schuster, C. Trautmann, R. Neumann, R.C. Ewing, Nucl. Instr. Meth. B 268 (2010) 2951.
- [8] J. Lian, X.T. Zu, K.V.G. Kutty, J. Chen, R.C. Ewing, Phys. Rev. B 66 (2002) 054108.
- [9] H.Y. Xiao, X.T. Zu, F. Gao, W.J. Weber, J. Appl. Phys. 104 (2008) 073503.
- [10] N. Li, H.Y. Xiao, X.T. Zu, L.M. Wang, R.C. Ewing, J. Lian, F. Gao, J. Appl. Phys. 102 (2007) 063704.
- [11] J. Lian, R.C. Ewing, L.M. Wang, J. Mater. Res. 19 (2005) 1575.
- [12] R.D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 32 (1976) 751.
- [13] J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (SRIM). Available from: http://www.srim.org>.
- [14] J. Zhang, Y.Q. Wang, J.A. Valdez, M. Tang, K.E. Sickafus, Nucl. Instr. Meth. B 419 (2011) 396.
- [15] Y.H. Li, B.P. Uberuaga, C. Jiang, S. Choudhury, J.A. Valdez, M.K. Patel, J. Won, Y.Q. Wang, M. Tang, D.J. Safarik, D.D. Byler, K.J. McClellan, I.O. Usov, T. Hartmann, G. Baldinozzi, K.E. Sickafus, Phys. Rev. Lett. 108 (2012) 195504.
- [16] D. Rafaja, V. Valvoda, A.J. Perry, J.R. Treglio, Surf. Coat. Technol. 92 (1997) 135.
- [17] G.R. Lumpkin, K.R. Whittle, S. Rios, K.L. Smith, N.J. Zaluzee, J. Phys.: Condens. Matter 16 (2004) 8557.
- [18] C. Jiang, C.R. Stanek, K.E. Sickafus, B.P. Uberuaga, Phys. Rev. B 79 (2009) 104203.
- [19] G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, N.J. Zaluzec, J. Solid State Chem. 180 (2007) 1512.
- [20] F.X. Zhang, J.W. Wang, J. Lian, M.K. Lang, U. Becker, R.C. Ewing, Phys. Rev. Lett. 100 (2008) 045503.
- [21] J. Lian, R.C. Ewing, L.M. Wang, K.B. Helean, J. Mater. Res. 19 (2004) 1575.
- [22] A.V. Schevchenko, L.M. Lopato, L.V. Nazerenko, Izv. Akad. Nauk SSSR Neorg. Mater. 20 (11) (1984) 1862.
- [23] J.L. Waring, S.J. Schneider, J. Res. Natl. Bur. Stand. Sec. A 69 (3) (1965) 255.
- [24] M.J.D. Rushton, C.R. Stanek, A.R. Cleave, B.P. Uberuaga, K.E. Sickafus, R.W. Grimes, Nucl. Instr. Meth. B 255 (2007) 151.
- [25] M.K. Patel, V. Vijayakumar, D.K. Avasthi, S. Kailas, J.C. Pivin, V. Grover, B.P. Mandal, A.K. Tyagi, Nucl. Instr. Meth. B 266 (2008) 2898.