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1.  Introduction

Piezoelectric materials can interconvert mechanical energy and 
electrical energy. Owing to their good optical, electric, chemical 
and mechanical properties, piezoelectric materials have been 
used in nanogenerators [1], supercapacitors [2], sensors [3] and 
optical devices [4]. Natural materials such as wood, bone, hair, 
and collagen have been discovered to have piezoelectric proper­
ties [5]. However, the weak piezoelectricity limits their applica­
tions. Researchers have devoted time to develop ceramics with 
high piezoelectricity and have found barium titanate (BaTiO3), 
lead metaniobate and lead zirconate titanate (PZT). Previous 
reports showed that piezoelectricity of ceramics was affected by 
intensity of pressure, temperature and humidity, as in Nguyen 
et al [6]. Piezoelectric ceramics often have poor biocompati­
bility and a brittle nature, which limit their applications in wear­
able devices and biomedical area.

Biomaterials with biocompatibility, easy preparation, non­
toxicity and environmental friendliness have been regarded as 
promising alternatives. Polarization was first found in asym­
metric biological tissue in 1941 [7]. Piezoelectric biomat­
erials have received increasing attention in recent years. Many 
researchers have studied their microstructures and phases, 
and have enhanced their physical and chemical properties 
by designing molecular structures, fabricating heterostruc­
tures and introducing dopants [8]. Reports have showed that 
the piezoelectric response in biomaterials is directly related 
to their phase, shape and growth orientation [9, 10]. The 
piezoelectricity of peptide fibrils and phages in axial direc­
tion is stronger than that in the radial direction [10]. Electric 
charges generated by physical stimulation on piezoelectric 
biomaterials contribute to bone growth [11], wound healing 
[12] and tissue regeneration [13]. Thanks to their biocompat­
ibility, nontoxicity, porous structure and good piezoelectricity, 
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piezoelectric biomaterials have been used for energy storage, 
energy harvesting and other areas.

In spite of the great advances of piezoelectric biomat­
erials and their application potential, a comprehensive review 
of recent development of piezoelectric biomaterial remains 
lacking. We herein review the growth, characterization and 
application of piezoelectric biomaterials. We discuss their 
applications in the fields of nanogenerators, energy-storage 
devices, sensors and tissue engineering. Moreover, we present 
their prospect at the end.

2.  Material design and characterization

2.1.  Piezoelectric virus-based biomaterials

Viruses functionalized through heredity and chemical modi­
fication are regarded as promising biofunctional materials. 
M13 bacteriophage (phage) had a regular rodlike shape, and 
its length and width were ~880 and of 6.6 nm (figure 1(a)), 
respectively [14]. The M13 phage was consisted of circular 
single-stranded DNA packaged with 2700 copies of pVIII 
major and ~5 copies of pIII, pVI, pVII, and pIX minor coat 
proteins [15]. Thereinto, the pVIII contained three diverse 
domains: a hydrophilic N-terminal domain with negative 
charges, an intermediate hydrophobic domain in middle sec­
tion, and a positive-charge phage genomic DNA electrostatic 
interaction domain, respectively [15]. The PVIII proteins with 
α-helical structure have a dipole moment pointed from the 
amino-terminal to carboxy-terminal direction and five-fold 
rotational and double screw symmetry (figures 1(b)–(d)) [16]. 
M13 phages exhibited a strong piezoelectric response due to 
their permanent axial polarization caused by the net dipole 
moment in pVIII proteins [17]. Owing to its hierarchical 
structure and functional versatility, the M13 phage is widely 
use in virus-based piezoelectric devices.

M13 phages allow self-assembly into two-dimensional 
(2D) films and three-dimensional (3D) scaffolds [18]. They 
enabled biochemical signal display by introducing distinct 
peptides on component building block through well-estab­
lished phage-display technology [19, 20]. Highly organized 
thin films using a nanofibrillar M13 phage as an elementary 
building block were reported by Rong et  al [18]. The M13 
phage thin films were used to fabricate scaffold to guide cell 
alignment along a well-defined direction. Engineered M13 
phages enabled cell-signaling peptides display on major 
coat proteins and they were grown into 3D scaffolds to sup­
port the differentiation and proliferation of neural progenitor 
cells [19]. The distinct growth approaches have a significantly 
influence on the physical and chemical properties of the M13 
phase. Self-assembled M13 phage films with liquid-crystal­
line properties were synthesized by the pulling method or the 
dropcast method [16]. Piezoelectric strengths of 7.8 pm V−1 
were measured through piezoresponse force microscopy, and 
their piezoelectricity was increased by increasing the phage 
films thickness [16]. Shin et al [17] prepared vertically aligned 
phage nanopillars through infiltrating phage suspension into a 
porous 3D template with the help of electrostatic interaction. 
The piezoelectric constant d33 for phages nanopillars-type 

phages was about three times as high as that of film-type 
phages. The compressive deformation of DNA in the phage 
nanopillars was believed to contribute to the piezoelectric 
response in the axial direction of the hyribde materials [17].

2.2.  Piezoelectric peptide-based biomaterials

Piezoelectric peptides display the merits of simple preparation, 
morphological diversity, functional diversity and biocompat­
ibility. Diphenylalanine (FF) is a short dipeptide composed of 
two phenylalanine through amide-bond formation. The first 
FF nanotubes were reported in 2003 by Reches and Gazit 
[21]. They found that the core fragments of β-amyloid pro­
tein of FF self-assembled into semi-crystalline nanotubes in 
an aqueous solution. Those FF nanotubes used amino acids as 
basic building blocks, showing inherent biocompatibility and 
special characteristics like high Young modulus [22]. Many 
researchers have reported various self-assembly processes. 
Diverse FF structures, including quantum dot, nanosphere, 
nano/microtube, nanofiber, nanometer/micron capsule, gel 
and nanoarray, have been developed.

Low-dimension structures of FF-based biomaterials, such 
as quantum dots and nanocapsules, demonstrated quantum 
confinement effects on electronic or optical properties. Hybrid 
colloidal spheres were achieved from cationic FF peptide and 
polyoxometalte [23]. These spheres were stimuli-responsive 
to PH and temperature and had adaptive encapsulation prop­
erties. Levin et al [24] achieved Boc-FF spheres with a meta­
stable phase, and those spheres was transformed into stable 
crystals. They fabricated different Boc-FF nanostructures by 
controlling the reaction time and concentration of dipeptide. 
The Boc-FF spheres were formed after 2 min of reaction in a 
mixed solution of water and ethanol, owing to Ostwald rip­
ening. When the reaction time increased to 40 and 60 min, the 
zero-dimension Boc-FF particles were transformed into one-
dimension filaments and tubes [24].

FF nanotubes and microrods were widely studied piezo­
electric materials that had a non-centrosymmetric space group 
(P61) [25]. They were self-assembled through vapor deposi­
tion or from solution. The vapor deposition approach has been 
used to grow FF on various substrates. Adler-Abramovich 
et  al [26] employed a vapor deposition method to prepare 
highly aligned aromatic peptide nanotubes (figure 2(a)). 
Those peptide nanotube arrays were achieved in different 
lengths, thicknesses and densities. Rosenman et al combined 
physical vapor deposition with photolithography and obtained 
well-designed patterns of aligned peptide nanotubes array 
on a wafer (figure 2(b)) [27]. When the FF nanostructures 
were grown from solution, the solvents and solubility of FF 
affected their morphologies through the interactions between 
FF building blocks and the interactions between water and FF 
building blocks [28]. Kholkin et al [29] synthesized in solu­
tion FF peptide nanotubes that displayed a piezoelectric con­
stant exceeding 60 pm V−1. In order to achieve large-scale and 
uniform growth, Nguyen et  al reported an epitaxial growth 
approach to fabricate vertically aligned FF microrods on 
various substrates [30]. The FF microrods (figure 2(c)) exhib­
ited uniform polarization, and the piezoelectric coefficient d33 
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reached 9.9 pm V−1. It was challenging to reverse the polariza­
tion of FF nanostructures, which may limit their applications 
in piezoelectric devices [31]. Molecular dynamics simulation 
was used to study the aggregation behavior of piezoelectric FF 
peptides [32]. Research showed that a weak field facilitated 
the formation of organized FF peptides due to the promotion 
of the alignment of individual molecular dipole moments. An 
electric field was confirmed by Nguyen et  al to control the 
polarization of FF microrod arrays [33]. When a positive or 
negative electric field was applied normal to the substrate sur­
face, a controllable and uniform polarization in FF microrods 

arrays was achieved (figures 2(d) and (e)). The piezoelectric 
constant in those FF materials exhibited great improvement 
and reached d33  =  17.9 pm V−1 [33].

Two-dimensional (2D) FF quantum well and three-dimen­
sional (3D) hydrogel have been explored for optical properties. 
For example, quantum confinement phenomena were observed 
in FF nanotubes by Amdursky et al [4]. 3D scaffolds of pep­
tides hydrogel were formed through gelatinizing to  absorb 
water. Nadav et  al [34] synthesized FF nanotubes  network 
hydrogel using N-fluorenylmethoxycarbonyl-FF (Fmoc-FF) 
as building blocks. The Fmoc-FF hydrogel presented optical 

Figure 1.  Schematic of M13 phage. (a) A M13 phage with a length of ~880 nm and a diameter of 6.6 nm and covered by ~2700 copies 
of a major coate protein (pVIII) and fiver copies of minor coat proteins (pIII and pIX). (b) The electrostatic potential of M13 phage. (c) 
Cross-sectional view of the electrostatic potential of M13 phage. (d) Side-view of the electrostatic potential of a single M13-phage pVIII 
coat protein. The pVIII coat protein has an ~20° tilt angle with respect to the phage long axis. The colors of the molecular surface indicate 
positive (red), neutral (white) and negative (blue) electrostatic potentials. Yellow arrows represent the dipole pointing to positive (red) 
regions from negative (blue). Reprinted with permission from [16].

Figure 2.  (a) Schematic diagram of the vapor deposition approach.(b) SEM image of peptide nanotubes patterns achieved through physical 
vapor deposition and photolithography approaches. [27] John Wiley & Sons. Copyright © 2010 European Peptide Society and John Wiley 
& Sons, Ltd. (c) Schematic diagram for hexagonally arranged nanochannels in an FF microrod. Reprinted from [30], Copyright (2015), 
with permission from Elsevier. Schematic of growth of FF peptide microrod arrays in (d) positive electric field and (e) negative-electric 
fields; The large arrows are the directions of the applied electric fields, and the plus and minus signs indicate the polarization of the FF 
molecules and FF microrod. Reprinted by permission from Macmillian Publishers Ltd: Nature Communications [33], Copyright (2016).
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absorption and photoluminescence. FF peptides were modified 
by adding a fluorenyl-methoxycarbonyl (Fmoc) side group, 
which formed a 3D Fmoc-FF nanofibrils network by molec­
ular stacking [35, 36]. The piezoelectric property in Fmoc-FF 
fibrous networks was investigated by Ryan et  al [37] They 
synthesized Fmoc-FF fibrous networks by a solvent-based 
method, and the fibrous networks exhibited a shear piezo­
electricity due to the noncentrosymmetric β-sheet structure.

2.3.  Other piezoelectric biopolymers

Piezoelectric polymers have received significant interest due 
to their simple structure, flexibility, and promising applica­
tion in bio-medical area. The mechanism for piezoelectricity 
in organic materials was reported by Fukada et  al [38], 
who proposed that the chiral atomic groups in biomaterial 
leaded to the piezoelectricity and other optical properties. 
Polymers such as poly(lacticacid) (PLA), poly-l-lactic acid 
(PLLA), polyhydroxybutyrate (PHB), polyvinylidene fluo­
ride (PVDF), poly(vinylidene fluoride-trifluoroethylene) 
(PVDF-TrFE) and polyamide-11 demonstrate piezoelectric 
properties.
β-phase PVDF films showed one of the highest piezo­

electric coefficients among all piezoelectric polymers [39]. 
Serrado Nunes et al [9] prepared α-phase and β-phase PVDF 
films by a solvent evaporation approach, and studied their 
piezoelectric activity influenced by phase and morphology. 
Piezoelectric activity was discovered in β-phase PVDF, and 
piezoelectric activity was not found in α-phase PVDF. The 
porous and non-porous structures of the β-phase PVDF films 
were investigated. The result showed that the piezoelectricity 
was affected by the porous structure. The piezoelectricity of 
PVDF films was influenced by its thickness and its dipole 
moment [40–42]. The 2/3 of the total piezoelectric response 
in β-phase PVDF was determined by the thickness of the 
film, and the rest was determined by its different dipolar 
moments [42].

Great efforts have been devoted to obtain β-phase or 
increase the content of β-phase in PVDF films. α-phase 
PVDF films were converted into β-phase by drawing [43]. 
When applying a draw ratio of 5 at 80 °C, the PVDF films 
contained the highest percentage of β-phase and exhibited 
the maximum piezoelectric coefficient values. Compared to 
PVDF, polyamide 11 has comparable remanent polarizations 
and coercive fields [44] but lower piezoelectric coefficient 
[45]. The piezoelectric coefficient in polyamide 11 was less 
than 4 pC/N at room temperature [46]. But the polyamide 
11 presented better thermal stability than PVDF in term of 
their piezoelectric activity. The piezoelectric activity was 
still retained up to 170 °C, which was close to its melting 
range [45].

The macroporous β-PVDF scaffolds were prepared by 
many strategies such as solvent casting/salt leaching, gel 
casting, phase separation and emulsion free-drying [47]. 
Scaffolds with a suitable small porous structure were benefi­
cial for homogeneous cell migration and tissue regeneration 
[48, 49]. Different morphologies and phases of PVDF were 
achieved through controlling electrospinning parameters 

[50]. Various porosities of PVDF-TrFE were obtained by 
electrospinning [51]. The content of β-phase was controlled 
by adjusting the applied voltage and rotation speed of the 
rotation collector [52]. Among them, the rotation speed had 
more influence on the fraction of β-phase. When the rotation 
speed increased form 500 rpm to 750 rpm, the β-phase content 
increased from 45% to 85% [52].

3.  Application of piezoelectric biomaterials

3.1.  Nanogenerator

Nanogenerators were discovered by Wang et al [53] in 2006. 
They fabricated the first nanogenerator based on aligned ZnO 
nanowires grown on an α-Al2O3 substrate. The discovery of 
ZnO-based nanogenerators led to many research works in 
investigating piezoelectric materials for energy harvesting 
applications. Piezoelectric nanogenerators are based on the 
piezoelectric effect through which mechanical energy is con­
verted into electricity. Since the discovery of piezoelectric 
nanogenerators, many other nanogenerators have also been 
demonstrated, such as triboelectric nanogenerators [54–56] 
and pyroelectric nanogenerators [57–59]. Piezoelectric bio­
polymers with a strong piezoelectric response and biological 
nature were regarded as a promising alternative for the appli­
cation of a piezoelectric naogenerator. For example, a self-
assembled M13 phage was used to fabricate a virus-based 
piezoelectric naogenerator in 2012, and the nanogenerator 
produced a current of 6 nA and a voltage of 400 mV [16]. 
A M13 phage nanopillars-based piezoelectric generator was 
developed by infiltrating vertically aligned phases into porous 
templates (figure 3(a)) [17]. The output voltage of M13 phage-
based nanogenerators was enhanced by engineering with four 
negatively charged glutamates (E) phage through a recombi­
nant DNA technology. The 4E phage nanopillar-based piezo­
electric nanogenerator generated an average output voltage of 
232 mV and a current of 11.1 nA, which were ~3 times higher 
compared to wild phage nanopillars. M13 phages were used 
as template to guide the growth of anisotropic BaTiO3 nano­
crystals for the fabrication of nanogenerators [60]. This flex­
ible virus-templated BaTiO3 nanogenerator produced a high 
output voltage of ~6 V and current of ~300 nA (figures 3(b) 
and (c)) [60].

Peptide-based biomaterials emerged as smart and sustain­
able materials for electrical energy conversion. For example, 
Nguyen et al [33] reported a power generator based on vertical 
FF microrod arrays with uniform polarization by applying elec­
tric fields (figure 3(d)). The FF-based power generator demon­
strated an open-circuit voltage of 1.4 V with an applied force of 
60 N (figures 3(e) and (f)), and a power density of 3.3 nW cm−2 
at 50 MΩ, which was higher than other reported bio-inspired 
generators and inorganic material-based nanogenerators [61]. 
An FF-based piezoelectric nanogenerator was integrated with 
a single-electrode triboelectric nanogenerator to form a hybrid 
nanogenerator [62]. Polyethylene terephthalate (PET) was 
chosen as a triboelectric nanogenerator material. The hybrid 
nanogenerator possessed the advantages of both a piezoelectric 
nanogenerator and a triboelectric nanogenerator. An enhanced 
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output voltage of 2.2 V was obtained from the hybrid nanogen­
erator. A meniscus-driven self-assembly process was reported 
to synthesize large-scale FF nanotube arrays with an asym­
metric shape [63]. The FF nanostructure was adjusted by the 
type of the solvent, the solubility and pulling speeds. The syn­
thesized FF nanotubes exhibited a high voltage of 2.8 V, a cur­
rent of 37.4 nA and a power of 8.2 nW, respectively, when a 
force of 42 N was applied [63].

3.2.  Energy storage

Electric double layer capacitor (EDLC) stores energy through 
reversible adsorption and desorption of charges on electrode 
surfaces [64]. The specific capacity of EDLC increased with 
the specific surface area of electrode materials. Piezoelectric 
biomaterials such as peptides can be used as the electrode for 
supercapacitors, due to their large specific surface area. Vapor 
deposition technology has been used to grow FF peptide nano­
tubes arrays for the electrode of an EDLC [26]. The capac­
itor based on an aromatic FF nanotubes-modified electrode 
showed a high areal capacitance of 480 µF cm−2 (figure 4(a)), 
which was four times as high as that of a carbon nanotube-
modified electrode and 30 times as high as that of a carbon 
electrode without any modification. The FF nanotubes-based 
capacitor demonstrated a high cycle stability and no obvious 
capacity fade was found after 10 000 charge–discharge cycles 
[26]. An external electric field was applied to generate unidi­
rectionally aligned and stable FF nanotube/microtube arrays 

at room temperature [65]. The FF nanotube/microtubes with 
open ends morphology and multi-layer walls contributed to 
the large specific surface area. The FF nanostructures were 
used as electrodes to fabricate a supercapacitor, and a high 
specific capacity of 1000 µF cm−2 at a scan rate of 50 mV s−1 
was obtained (figure 4(b)).

Piezoelectric biomaterials were used as versatile scaf­
folds for batteries or catalysts for water oxidation [66, 67]. 
For examples, Ryu et al [68] prepared FF nanowires as scaf­
folds by treating amorphous thin FF films with aniline vapor 
at 100 °C for 12 h (figure 4(c)). Co2+ absorbed on FF films by 
preincubating in a CoCl2 aqueous solution. Finally, FF/Co3O4 
hybrid nanowires were synthesized through reacting Co2+ 
with NaBH4 [68]. These FF/Co3O4 hybrid nanowires served 
as negative electrodes for Li-ion batteries demonstrating good 
electrochemical performance. Lee et al [66] used the major 
coat protein of E4, a modified M13 virus, as the template 
for the growth of an amorphous anhydrous iron phosphate 
(α-FePO4), and the α-FePO4 was grown on multifunctional 
viruses/single-walled carbon nanotubes (SWNT) as a lith­
ium-ion battery cathode. The lithium-ion batteries showed an 
excellent performance due to the great affinity of the virus 
clone toward SWNTs [66].

3.3.  Sensor

Piezoelectric biomaterials have been used in biosensors. 
Various peptide nanostructures were integrated in biosensors 

Figure 3.  (a) Schematic diagram of assembly for the vertically aligned M13 phage by enforced infiltration. Reprinted from [17] with 
permission of The Royal Society of Chemistry. Measurement of virus-templated BaTiO3 nanogenerator for (b) short-circuit current and 
(c) open-circuit voltage in both forward and reverse connections with a 5 cm’s curvature radius, 0.3 Hz’s frequency, and rate of 0.2 m s−1. 
Reprinted with permission from [60]. Copyright (2013) American Chemical Society. (d) Schematic of the FF peptide-based nanogenerator 
connected to the measurement equipment. Bottom-right inset: photography of a real device. (e) Open-circuit voltage and (f) short-circuit 
current of a FF-based power generator. Reprinted by permission from Macmillan Publishers Ltd: Nature Communciations [33], Copyright 
(2016).
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to detect phenol, and the sensitivity was significantly improved 
by the FF pepetide nanoforest that consisted of dense arrays of 
self-assembled nanostructures [69]. Biosensors with FF nano­
forest-coated electrodes were 17 times as sensitive as sensors 
with uncoated electrodes because of the enormous surface area 
of the nanoforest. They were also more sensitive than carbon 
nanotube-modified electrode, FF peptide nanotubes-modified 
electrode and FF/CNT nanotubes composite-based sensors 
[69]. FF nanostructure-based sensors were used for cellular 
detection. Sasso and co-workers reported an amperometric 
dopamine sensor based on polypyrrole FF nanowire/ polypyr­
role [70]. Such sensors reached a high detection limit value of 
3.1 µM, which was close to the concentration of dopamine in 
in vivo systems. Additionally, a high value of 100 µA for the 
amperometric detection of dopamine was obtained.

By virtue of environmental friendliness, simple process 
and low temperature treatment, 3D printing technology has 
attracted increasing attention and has widely been applied in 
fields of energy storages [71], tissue engineering and drug 
delivery [72]. Recently, 3D printing technology was employed 
to fabricate a sensor based on 10% of barium titanate (BaTiO3) 
nanoparticles and β-phase PVDF ball-mill naocomposites. 
The sensor reported and produced a voltage of 4 V when 
gentle finger tapped, 10 folds higher than voltage from a film-
based sensor [73]. The enhanced performance of the sensor 
was due to the improvement of inherent piezoelectric prop­
erties of the PVDF film. The 10 wt.% BaTiO3 piezoelectric 

fillers added in PVDF play the role of mechanical activation 
for the increase of dipole moments [74, 75].

3.4. Tissue engineering

Piezoelectric polymers such as PLA, PHB, PVDF and PVDF-
TrFE were often chosen to fabricate scaffolds for cell growth 
and differentiation in the field of tissue engineering. Among 
them, PVDF and its co-polymer were the most used biopolymer 
materials. Nanofibers, films and 3D porous scaffolds have been 
reported for bone, neural and muscle regeneration [76]. 1D 
fibers were one of the most frequently adopted materials for 
tissue engineering (figure 5(a)) [76, 77]. The phase of PVDF 
fibers synthesized by electrospining was reported to influence 
the cell growth [78]. Cells exhibited higher alkaline phospha­
tase activity and earlier mineralization when they grew on 
PVDF fibers achieved at 25 kV than on PVDF fibers achieved 
at 12 kV, owing to the higher β-phase fraction (72%) of PVDF 
fibers achieved at 25 kV [78]. PVDF-TrFE fibrous scaffolds 
were reported to facilitate the differentiation of mature neural 
cells [79]. The neurite extension and neuronal differentiation 
were also stimulated by the piezoelectric effect of PVDF-TrFE 
scaffolds. During the muscle regeneration, the cell adhesion 
and proliferation were enhanced by negative charges on the 
β-PVDF fibrous surface [77]. The elongation of cells along the 
aligned fibers was induced by oriented fibers, demonstrating 
their potential for the application in muscle regeneration.

Figure 4.  (a) Cyclic voltammogram of an FF nanotubes-modified electrode at different scan rates. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Communications [26], Copyright (2009). (b) Cyclic voltammogram of a fluorine-doped tin oxide coated 
glass (FTO) electrode and an FF-coated FTO electrode. The insert demonstrated the porous wall of FF nanotube/microtube. [65] (2014) 
(© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014). With permission of Springer. (c) Schematic diagram of the 
synthesis of FF/Co3O4 hybrid nanowires. Reprinted with permission from [68]. Copyright (2011) American Chemical Society.
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Piezoelectric PVDF generated mechanical stimulation 
when a voltage was applied due to the converse piezoelectric 
effect. Frias et al [80] reported that the mechanical stimula­
tion promoted bone cells growth. When a voltage of 5 V was 
applied to a piezoelectric PVDF substrate at physiological fre­
quencies of 1 or 3 Hz, new bones were grown in vivo on the 
PVDF substrate. The metabolic activity and gene expression 
of osteoblasts increased in culture due to the mechanical stim­
ulation [80]. A PVDF-based actuator was implanted in sheep 
femurs and tibias and produced a mechanical stimulation to 
the surrounding cells. The rate of new bone growth was higher 
around the active actuator than a static control sample (figures 
5(b) and (c)) [81].

When cells were cultured on PVDF films, the influence of 
surface charges of the film on the cells adhesion and osteo­
genic differentiation was observed by Pärssinen et al [82]. The 
cell cultured on ‘poled  −’ β-PVDF increased when compared 
to cells on the non-poled or ‘poled  +’ PVDF films, because 
absorbed fibronectin was easily formed on the ‘poled  −’ 
β-PVDF substrate (figures 5(d) and (e)) [82]. Ribeiro et  al 
[83] conducted similar works and used PVDF coated with 
fibronectin that could promote cell adhesion. The surface 
charge was produced by mechanical stimuli at 1 Hz. The oste­
ogenic differentiation cultured on ‘poled  −’ β-PVDF films 
under dynamic conditions was higher than static conditions 
after 15 d [83]. The result suggested that the electromechan­
ical stimuli could promote the osteogenic differentiation of 
cells. The piezoelectric PVDF was also used as a substrate for 

neurons culturing [77, 84]. PVDF substrates with the piezo­
electric property produce voltages of 2–3 mV at a frequency 
of 1200 Hz, and clearly enhanced the outgrowth process of 
neurons [76].

4.  Conclusion and future perspective

Piezoelectric biomaterials are important for both fundamental 
studies and practical applications. The morphology of pep­
tide materials, the molecular mechanism of physicochemical 
property, the doping/composite structure, and semiconductor 
conductivity are of particular research interest. Piezoelectric 
biomaterials have been applied in the fields of nanogenera­
tors, energy-storage devices, sensors and tissue engineering. 
In terms of their applications, several aspects are highlighted 
as follows:

Nanogenerators based on piezoelectric biomaterials such 
as FF peptides have drawn increasing attention. The nano­
generator with high output and stability is strongly desired. 
Hence, biomaterials with a strong piezoelectric response and 
good stability is of great interest for high-performance nano­
generators. Exploring high-piezoelectric response materials 
by controlling their composition and structure may lead to 
high-power nanogenerators.

Developing high-performance capacitors based on bio­
materials is still a challenge owing to the limitations of 
their conductivity and chemical activity. Thus, improving 
the conductivity through surface modification may raise the 

Figure 5.  (a) SEM image of aligned electrospun β-PVDF fibers. Reproduced from [77] with permission of The Royal Society of 
Chemistry. (b), (c) Microphotograph of nondecalcified sections. Reproduced with permission from [81]. On top, (b) exhibits Z3 areas 
of actuator and (c) exhibits static control, both implanted in the same position in tibia. Total adhesion area (d) and the focal adhesions’s 
number (e) in cells cultured on various substrates after 48 h. [82] John Wiley & Sons. © 2014 Wiley Periodicals, Inc.
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performance of biomaterial-based capacitors to a new level. 
The virus as a template to guide the ordered growth of elec­
trode materials is a promising strategy for a modified superca­
pacitor or battery.

The application of piezoelectric biomaterials for tissue 
engineering is an important and under-explored area. These 
materials can generate electrical or mechanical stimula­
tion through the piezoelectric effect or the converse piezo­
electric effect, and both electric and mechanical stimulation 
were confirmed to enhance the cell growth and differentia­
tion. Piezoelectric biomaterials may serve as a good candi­
date for the development of biodegradable scaffold for tissue 
engineering.
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